Spectral Theorem for Self-adjoint Linear Operators

ثبت نشده
چکیده

Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) of V consisting of eigenvectors of A. Each eigenvalue is real. Before proceeding to the proof, let us note why this theorem is important. Recall that, after making a choice of of basis v1, . . . , vn for V , a linear operator A corresponds to an n× n matrix A = (Aij) where n = dimV . The correspondence is given by Avj = n

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).

متن کامل

Math 713 Spring 2010 Lecture Notes on Functional Analysis

1. Topological Vector Spaces 1 1.1. The Krein-Milman theorem 7 2. Banach Algebras 11 2.1. Commutative Banach algebras 14 2.2. ∗–Algebras (over complexes) 17 2.3. Problems on Banach algebras 20 3. The Spectral Theorem 21 3.1. Problems on the Spectral Theorem (Multiplication Operator Form) 26 3.2. Integration with respect to a Projection Valued Measure 27 3.3. The Functional Calculus 34 4. Unboun...

متن کامل

Math 713 Spring 2012 Lecture Notes on Functional Analysis

1. Topological Vector Spaces 1 1.1. The Krein-Milman theorem 7 2. Banach Algebras 11 2.1. Commutative Banach algebras 14 2.2. ∗–Algebras (over complexes) 17 2.3. Problems on Banach algebras 20 3. The Spectral Theorem 21 3.1. Problems on the Spectral Theorem (Multiplication Operator Form) 26 3.2. Integration with respect to a Projection Valued Measure 27 3.3. The Functional Calculus 34 4. Unboun...

متن کامل

Math 713 Spring 2008 Lecture Notes on Functional Analysis

1. Topological Vector Spaces 1 1.1. The Krein-Milman theorem 7 2. Banach Algebras 11 2.1. Commutative Banach algebras 14 2.2. ∗–Algebras (over complexes) 17 2.3. Exercises 20 3. The Spectral Theorem 21 3.1. Problems on the Spectral Theorem (Multiplication Operator Form) 26 3.2. Integration with respect to a Projection Valued Measure 27 3.3. The Functional Calculus 34 4. Unbounded Operators 37 4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009